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Abstract Understory fire modeling is a key tool to

investigate the cornerstone concept of landscape

ecology, i.e. how ecological processes relate to

landscape structure and dynamics. Within this context,

we developed FISC—a model that simulates fire

ignition and spread and its effects on the forest carbon

balance. FISC is dynamically coupled to a land-use

change model to simulate fire regimes on the Ama-

zonian landscapes of the Xingu Headwaters under

deforestation, climate change, and land-use manage-

ment scenarios. FISC incorporates a stochastic cellular

automata approach to simulate fire spread across

agricultural and forested lands. CARLUC, nested in

FISC, simulates fuel dynamics, forest regrowth, and

carbon emissions. Simulations of fire regimes under

modeled scenarios revealed that the major current and

future driver of understory fires is forest fragmentation

rather than climate change. Fire intensity proved

closely related to the landscape structure of the

remaining forest. While climate change may increase

the percentage of forest burned outside protected areasElectronic supplementary material The online version of
this article (doi:10.1007/s10980-012-9723-6) contains
supplementary material, which is available to authorized users.
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by 30% over the next four decades, deforestation alone

may double it. Nevertheless, a scenario of forest

recovery and better land-use management would abate

fire intensity by 18% even in the face of climate

change. Over this time period, the total carbon

balance of the Xingu’s forests varies from an average

net sink of 1.6 ton ha-1 year-1 in the absence of

climate change, fire and deforestation to a source of

-0.1 ton ha-1 year-1 in a scenario that incorporates

these three processes.

Keywords Carbon fluxes � Landscape dynamics �
Landscape metrics � Spatially-explicit modeling �
Land-use management

Introduction

Interactions between deforestation and climate drive

the frequency and magnitude of wildfires in the

Amazon (Nepstad et al. 1999; Cochrane 2003). During

the 1997–1998 El Niño event, about 10,000 km2 of

forests burned in the state of Roraima in the northern

Amazon (Phulpin et al. 2002) and in 2005, the unusual

warming of tropical North Atlantic waters resulted in a

threefold increase in the number of fires in the

southwestern Amazon (Marengo et al. 2008). In

addition to the direct consequences of fire for forest

ecosystems, there is a growing concern about the

potential effects of wildfires on global warming, as

they affect the carbon balance between the atmosphere

and the forest. The Amazon forest contains one-tenth

of global carbon stored in land ecosystems and

accounts for one-tenth of net primary production

worldwide (Melillo et al. 1993). In El Niño years,

however, carbon emissions from forest fires in the

Brazilian Amazon may reach between 0.024 and

0.165 Pg (Alencar et al. 2006), playing, therefore, an

important role in global warming.

In the near future, climate change may increase the

frequency of wildfires (Silvestrini et al. 2011), as large

parts of the Amazon may become warmer and drier

(Oyama and Nobre 2003; Betts et al. 2004) and

drought events—such as the ones of 1997–1998, 2005,

and 2010—become more frequent due to global

warming (Cox et al. 2008). The combined effects of

a warmer climate and rainfall reduction, with the latter

further aggravated by deforestation (Sampaio et al.

2007), would eventually lead to the substitution of

large parts of the Amazon moist forests by a savanna-

like vegetation (Oyama and Nobre 2003; Nepstad

et al. 2008), thereby increasing the susceptibility of

remaining forests to fire. The degree to which this

process will affect the Amazon forest is still uncertain

and depends on other joint effects of climate change,

such as the potential fertilization of vegetation from

higher atmospheric CO2 concentrations (Ramming

et al. 2010), and the degree of resilience of remaining

forests. In this way, the preservation of large blocks of

undisturbed forests could be the most important factor

to help sustain the health of Amazon forest ecosys-

tems, given that large tracts of undisturbed forest may

maintain microclimates and contribute to the persis-

tence of tropical, humid forests even in the face of

climate change (Cochrane and Barber 2009; Malhi

et al. 2009).

Today, forest fragmentation and the use of fire as a

land management tool are the major drivers of fire in

tropical forests. Forest fragmentation has increased the

frequency of large fire events in Amazon frontiers

from average intervals of fifteen to five years

(Cochrane et al. 1999). Disturbance from logging also

contributes to forest fires, as it opens the canopy and

increases light penetration that dries dead leaves on the

floor, thereby decreasing understory humidity and

increasing fuel loads and forest flammability

(Cochrane 2003). It is common to use fire to restore

pasture productivity and to clear forested land for

agriculture in the Amazon, and these activities are the

major ignition sources for understory fires (Nepstad

et al. 1999; Alencar et al. 2004). In these mixed

agricultural landscapes, forest fragments become

highly susceptible to fires that escape from nearby

cleared areas, especially due to lower humidity and

higher flammability at forest edges (Kapos et al. 1993;

Ray et al. 2005). Fire also begets fire; after an

understory fire event, tree mortality produces a

combination of increased dead organic matter on the

forest floor and a more open canopy, thus increasing

the chance of fire recurrence (Nepstad et al. 1999).

The potential consequences of forest fires have

called into question our limited understanding of the

science of fire in the tropics, and underscored the need

to develop models of understory fire as tools to assess

the impacts of forest fires in the face of a changing

environment due to global warming and increasing

anthropogenic forest disturbance. Moreover, fire mod-

eling represents a unique opportunity to investigate
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the cornerstone concept of landscape ecology, i.e. how

landscape function interacts with its spatial pattern

over time (Forman and Godron 1986).

Although various studies sought to disentangle the

effects of landscape attributes on the process of fire

(e.g. Green 1983; Turner and Romme 1994; Johnstone

et al. 2011), modeling fire in tropical forests is still at an

early stage (Silvestrini et al. 2011). There are only few

models of fire for the Amazon, and all of them attempt

to describe the risk of fire rather than fire behavior. (e.g.

Cardoso et al. 2003; Nepstad et al. 2004; Sismanoglu

and Setzer 2005; Silvestrini et al. 2011). All these

models were developed by analyzing the space-time

distribution of hot pixels, which mostly represent fires

in open areas (Silvestrini et al. 2011). Alencar et al.

(2004) were the first to evaluate the risk of understory

fires in the Amazon by relating forest fire scars mapped

from Landsat imagery to forest fragmentation and

climatic conditions to predict the probability of forest

fires. However, a need exists for a model that integrates

current knowledge on both ignition and propagation

processes of tropical understory fires. To fill this gap,

we developed a process-based understory fire model,

FISC (fire ignition, spread and carbon components),

and applied it to simulate current and future understory

fire regimes and the associated carbon balance of

forested landscapes of the Xingu Headwaters under a

set of land-cover change, land-use management, and

climate change scenarios.

Study region

The Xingu headwaters are located in the southeastern

Brazilian Amazon between 9� and 15� south latitude

and 51� and 56� west longitude. This dynamic

agricultural region comprises a mosaic of large cattle

ranches and soybean farms amid large fragments of

rainforest, transitional forest, and native savanna—

cerrado (Stickler et al. 2009). These mixed agricul-

tural and forested landscapes surround the Xingu

Indigenous Park, which together with the Capoto-

Jarima, Naruv’tu and Wawi reservations, forms a

territory of approximately 34,000 km2 that is home to

18 indigenous groups (Figs. 1 and S1 in Supplemen-

tary Material). Of particular importance, the Xingu

headwaters house one of the most threatened Amazo-

nian ecosystems due to its fertile soils and close

Fig. 1 (a) The Xingu

Headwaters and its location

in Mato Grosso. Tanguro

Farm, where fire

experiments are being

conducted, is pinpointed on

the map. PIX stands for the

Xingu Indigenous Park.

(b) Enlarged view of the

southern region showing

simulated and observed fire

scars between January and

August 2005
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proximity to major population centers, paved roads,

and the highly productive grain crop belt in the State of

Mato Grosso (Soares-Filho et al. 2006). Our study area

covers 176,000 km2, of which 75,000 and 35,000 km2

currently consist of forest remnants outside and inside

protected areas (PAs), respectively.

Methods

FISC simulates fire ignition and spread and the effects

of fire on carbon fluxes between forest pools and from

the forest to the atmosphere. FISC incorporates a

stochastic CA (cellular automata) approach to simulate

fire behavior across agricultural and forested lands.

Climatic conditions affect the risk of fire ignition and

forest flammability as well as the resilience of the

forest following a fire event. The carbon dynamics

component of FISC, CARLUC—carbon and land use

change (Hirsch et al. 2004) is a spatially-explicit,

process-based carbon-cycle model that simulates for-

est flammability including fuel dynamics, biomass

burning, charcoal formation, forest regrowth, and

carbon fluxes between forest pools and from the forest

to the atmosphere during and after a fire event (Fig. 2).

FISC is dynamically coupled to a high spatial resolu-

tion, land-cover change model (Stickler et al. 2009;

Appendix 1 in Supplementary Material) to simulate

fire regimes under a set of scenarios of deforestation,

land-use management, and climate change. All mod-

eling and analytical components including a set of

selected landscape metrics were implemented using

Dinamica EGO freeware (Soares-Filho et al. 2010a).

Data

Fire ignition sources in FISC consist of fire activity

maps represented by monthly sums of simulated hot

Fig. 2 Flowchart of FISC modules and inputs. Forest carbon

pools in CARLUC consist of leaves, stems, roots, structural root

litter (StrucRL), metabolic root litter (MetRL), structural leaf

litter (StrucLL), metabolic leaf litter (MetLL), coarse woody

debris (CWD) and humus
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pixels from a model of fire occurrence (Silvestrini

et al. 2011, Appendix 2 in Supplementary Material).

To evaluate the spatial association of remotely-sensed

hot pixels with fire scars that actually represent

understory fires, we derived a map of forest fire scars

covering the Xingu headwaters for 2005 by applying

the CLAS-BURN algorithm (Alencar et al. 2011) on a

mosaic of Landsat-7 TM images acquired on 3 July

and 25 August, 2005 (Appendix 3 in Supplementary

Material). We concluded that hot pixels that occurred

during this same time-period could represent ignition

sources for mapped fire scars after testing for spatial

association between these events using the K12

function (Appendix 4 in Supplementary Material),

whose results confirmed their spatial dependence

(p \ 0.05).

FISC integrates our current knowledge about

understory fire behavior obtained from ongoing fire

research at Fazenda Tanguro near the southeastern

Xingu River (Fig. 1) and previous field measurements

(Ray et al. 2005). In this project, 50 ha parcels of

forest are burned annually to determine the effects of

fire on the state of the forest (Balch et al. 2008).

Observations from these experiments were used to

establish the effects of fire on fuel dynamics, tree

mortality rates, charcoal formation, and biomass

burning.

Terrain features incorporated into the model are

upslope direction and physical barriers to fire, such as

land use and rivers, and wind direction and intensity.

Slope was derived from Shuttle Radar Topography

Mission maps, and rivers and current land-use come

from Stickler et al. (2009). Climate input variables

consist of monthly series of temperature, precipitation,

plant available water (PAW), photosynthetically

active radiation (PAR) and vapor pressure deficit

(VPD), all of which were acquired from meteorolog-

ical stations distributed throughout the Amazon

(Hirsch et al. 2004). In addition, CARLUC calculates

understory vapor pressure deficit (IVPD) that estab-

lishes the degree of forest flammability in FISC (Ray

et al. 2005; Balch et al. 2008). Other climate inputs

consist of monthly means of wind fields for 2005

obtained from the European Centre for Medium-

Range Weather Forecasts (Appendix 5 in Supplemen-

tary Material).

Simulated land-cover maps come from Stickler

et al. (2009). Cerrado areas in the region were masked

in the model for land-cover transitions and carbon

balance calculation. To simulate the effects of climate

change, we applied the projections from the Had-

CM3—Hadley centre coupled model (Cox et al.

1999)—one of the IPCC-AR4 (Intergovernmental

Panel on Climate Change, Fourth Assessment Report)

general circulation models under the SRES-A2 emis-

sion scenario (IPCC 2007). We chose this model

because it successfully replicates the effects of El-

Niño droughts on Amazon climate (Collins et al 2005;

Cox et al. 2008), and thus is widely employed to

simulate climate change over the Amazon (e.g. Cox

et al. 2004; World Bank 2010). The SRES-A2 scenario

is currently considered highly plausible given the

constant increase in anthropogenic carbon emissions

(Van der Werf et al. 2009), and has been applied to

evaluate the likelihood of Amazon dieback (e.g.

World Bank 2010).

FISC model

FISC incorporates three components of the fire process:

ignition, spread/extinguishment, and the impacts of fire

on the state of the forest. The ignition component of

FISC is described in Silvestrini et al. (2011). This model

integrates the effects of a series of anthropogenic

factors—e.g. land-use zoning and proximity to roads,

towns and deforested areas—with climatic conditions

described by monthly VPD to simulate the occurrence

of hot pixels in the Amazon. We recalibrated this model

component to run at FISC spatial resolution of

320 9 320 m (Appendix 2 in Supplementary Material).

Any hot pixel that occurs in the forest and within 4 km

from its edge is considered to be a potential ignition

source for understory fire. Once ignition occurs, fire may

run toward and across the forest if a series of environ-

mental conditions are met. These conditions are

integrated in a CA model that runs nested within the

monthly fire components, as follows:

Pburnxy;i;t ¼ Risk TExy;i � Risk climxy;i

� Risk fuelxy;i �Wfxy;i;t � Nbfxy;i;t ð1Þ

where Pburnxy, i, t is the probability that a cell with

location x, y will catch fire in month i and CA time

step t, and Risk_TE is the probability of fire propa-

gation due to landscape features. Monthly climate

conditions are incorporated through the climatic risk

of fire Risk_Clim and Risk_Fuel, which is the

probability that fire will spread as a function of fuel

loads. In the CA, the combined probability of these
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three components is adjusted according to wind

intensity and direction (Wfxy, i, t) in relation to

neighboring cells that caught fire in time-step t - 1

and Nbfxy, i, t, which represents the fire contagion risk

from these cells. Risk_TE comes from terrain_effort

that describes the effort required for fire to propagate

across the landscape dependent upon its direction on

the hillside (upslope), plus the presence of physical

barriers, so that:

terrain effortxy;i¼ accumuted cost surface

ðfland coverþ fterrain positionþ fobstaclesÞxy;i ð2Þ

Firstly, the model assigns a friction value (Table 1)

to a cell xy according to its relative elevation with

respect to immediate neighboring cells that are closer

to ignition sources (fterrain_position). Fire spreads

more easily outside the forest due to higher flamma-

bility of pasture and cropland (fland_cover). High

friction values are also assigned to streams (fobsta-

cles), as streams may prevent the direct advance of

fire, but not its indirect spread through flying embers.

Next, the model calculates a cost-distance map using

the friction map and the hot pixels as the source map

(Soares-Filho et al. 2010a). Hence, values in the

resulting map are proportional to the effort required

for the fire to propagate away from its ignition source.

Finally, Risk_TE is calculated as follows.

Risk TEx;y;i ¼
e

w
þ
terrain effortxy;i

1þ e
wþterrain effortxy;i

ð3Þ

where W?terrain_effortxy, i corresponds to coefficients

assigned to ranges of terrain_effort, which were derived

by analyzing the spatial dependence between fire scar

and cost-distance maps using the weights of evidence

method (Soares-Filho et al. 2010a) (Table 1).Favorable

climatic conditions for fire spread within the forest

(Risk_clim) are a function of IVPD output from

CARLUC. Ray et al. (2005) determined that understory

fires do not propagate if IVPD is greater than 0.8 kPa in

the central-western Amazon. For forests of the Xingu

region, we derived a value of 1.3 kPa for this threshold

by measuring IVPD around the mapped forest fire scars

during the time of their occurrence. Instead of using a

binary probability function for fire occurrence, we

derived the following equation:

Risk climx;y;i ¼ if deforested then 1 else

e�8:79þ6:765�innnerVPDxy;i

1þ e�8:79þ6:765�innnerVPDxy;i
ð4Þ

The third component (Risk_Fuel) determines the

role of fine litter in inhibiting or facilitating understory

fire propagation (Balch et al 2008). This variable is

determined using the structural leaf litter pool (Struc-

LL) simulated within CARLUC. StrucLL is obtained

by applying a mortality rate to the leaf pool due to

either natural decay or fire event. At each monthly

time-step, a fraction of leaves dies naturally as a

function of PAW and 90% of the carbon resulting from

this process goes to StrucLL (See equation in Fig. 2).

According to this equation, a decrease in PAW causes

an increase in mortality rates. Hence, as climate

becomes drier, the amount of carbon in StrucLL

augments, leading to an increase in fuel loads. If a fire

event occurs, an additional amount of carbon will be

transferred to StrucLL as a result of mortality by fire

(Eq. S1, Appendix 6 in Supplementary Material).

Table 1 Model parameter coefficients determined from calibration

Equation no. Parameter Description Value

2 fland_cover Friction of forest areas, agricultural areas 0.5, 0

2 fobstacles Friction of streams and water bodies 5

2 fterrain_position Friction relative to uphill and downhill directions 0.5, 2

3 W?terrain_effortxy, i Weights of evidence for cost ranges: 0–3, 3–12,

12–15, 15–30, 30–57, 57–60, 60–66, 66–69,

69–105, 105–108, 108–111, 111–114, 114–129,

129–132, 132–258

1.06, 0.73, 0.33, 0.10, -0.07, -0.34,

-0.72, -1.44, -1.73, -1.87, -1.93,

-2.11, -2.08, -2.08, -2.76

6 s_wd Relative azimuth (45o increments) 1.1, 1.05, 1, 0.9, 0.8, 0.9, 1, 1.05

6 c Wind intensity constant 0.06

7 z Constant for number of neighboring cells 0.05
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Although fuel load is a determinant of fire risk, field

measures of minimum fuel load threshold for a forest

to catch fire do not exist for the Amazon. To solve this

problem, we constructed a probability function (Eq. 5)

and calibrated it so that a 0.5 probability would be

expected when fuel loads in StrucLL are around

0.2 kg m-2 (figure derived from the percentage of

biomass burned), thereby preventing fire recurrence

after a sequence of three successive events (Balch

et al. 2008).

Riskfuelxy;i
¼ e�13:05þ64:52�strucLLxy;i

1þ e�13:05þ64:52�strucLLxy;i
ð5Þ

The probabilities of fire from the components

Risk_TE, Risk_clim and Risk_fuel are integrated for

each cell on a monthly basis after running the ignition

source component. Thereafter, the CA module begins

by computing the effect of wind intensity and direction

from neighboring cells that caught fire in time step

t - 1 on a particular cell so that:

Wfxy;i;t ¼ s wdx;y;i;t � eC�Wixy;i ð6Þ

where wixy, i corresponds to the wind intensity in

m s-1, c a constant, and s_wdx,y,i, t is the weight for

wind direction that is incorporated into the model

according to Table 1. Next, the number of neighboring

cells burned in step t - 1 accounts for the probability

that a central cell catches fire as follows:

Nbfxy;i;t ¼ ð1þ znÞ ð7Þ

where n is the number of adjacent cells—using an

8-cell Moore neighborhood—that burned in a previous

step t - 1, and z is a constant (Table 1). Note that we

truncate probabilities greater than 0.9999 in Eq. 1. The

CA model iterates 30 times. This number was defined

so as to allow fire events to extinguish naturally

according to their maximum observed reach across the

region’s forests: somewhere between 2 and 3 km. In

this manner, the model compares the integrated

probability of fire (Eq. 1) against a random number

generated from a Beta (2.97; 1) distribution in order to

stochastically simulate burned cells. The Beta distri-

bution best matched the probability distribution func-

tion of cells with fire scars.

The calibration and fine-tuning of model parame-

ters were performed using a genetic algorithm (GA)

tool available in Dinamica EGO freeware (Soares-

Filho et al. 2010a). We set up the GA tool using

k-neighbor estimation, an asymptotic exit condition,

and 100 individuals per generation. The GA fitness

function compares the match between the number of

simulated burned cells with cells with fire scars in

2005 and the proximity of simulated to burned cells

determined using the reciprocal fuzzy similarity

method (Almeida et al. 2008; Soares-Filho et al.

2010a). Although the model could not be validated

with respect to its spatial output patterns due to the

absence of time-series of fire scar maps, calibration

scores for number of cells burned in 2005 were 100%

with spatial accuracy of 50% within a search radius of

*10 km (Fig. S4, Appendix 3 in Supplementary

Material).

While the major components of FISC iterate

monthly, deforestation and regrowth following land

abandonment are simulated on an annual basis. After

both components of fire ignition and spread run, the

CARLUC model, running at the same spatial resolution

of FISC, is called to process interactions between fire

and the state of the forest. We initiated CARLUC carbon

pools by proportionally rating the equilibrium values

with a map of biomass derived from Saatchi et al.

(2007)—who estimated that the forests of the Xingu

region contain 70 ton ha-1 of carbon, on average—in

order to reflect current forest carbon content rather than

carbon content in a potential equilibrium.

CARLUC includes specific tree mortality rates due

to logging and fire events, and therefore explicitly

calculates the effects of fire on forest fuel loads and

post-fire regeneration (Fig. 2). CARLUC also simu-

lates forest regrowth, which mostly resembles forest

recovery after a period of medium-intensity land use

(Hirsch et al. 2004). CARLUC was originally devel-

oped for the moist forests of Pará. We recalibrated

CARLUC to the forests of Xingu by adopting the

mortality rates from fire measured in our field

experiments at Tanguro (Appendix 6 in Supplemen-

tary Material).

Given that estimates of carbon emissions from

deforestation vary as a function of the spatial distri-

bution of biomass, land uses, and time following

deforestation (Fearnside 1997), we estimated ‘‘com-

mitted emissions’’ (Fearnside 1997) assuming that

85% of the carbon contained in forests is released to

atmosphere after deforestation (Houghton et al. 2000).

In turn, total direct emissions from understory fires are

calculated following Balch et al. (2008):
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Emission firei

¼
X
½CLossxy;i � ðMetLLxy;i þ StrucLLxy;iÞ

þ 0:44 � Cwdxy;i� ð8Þ

where CLossxy, i is the combustion percent of the leaf

litter pools (Eq. S2, Appendix 6 in Supplementary

Material) and MetLLxy, i, StrucLLxy, i, Cwdxy, i

represent the amounts of carbon present in metabolic

and structural leaf litter and CWD pools, respectively.

CARLUC, nested in FISC, simulates the interac-

tions between fire and fuel loads; fire-induced leaf

mortality transfers carbon to the structural leaf litter

and CWD pools, leading, in this case, to an increase in

fuel loads. However, fire consumes much more carbon

than is replaced by tree mortality. Hence, fuel

consumption by a sequence of successive fire events

eventually reduces the probability of fire occurring

(Balch et al. 2008) until these pools build up again

through natural mortality (Fig. 3).

Scenarios of fire, land-cover change

and management, and climate change

We ran FISC from 2010 to 2050 under eleven

scenarios (Table 2). These scenarios combine the

presence and absence of fire with three scenarios of

land-cover change, one scenario of climate change

versus current conditions and one scenario of fire

prevention. The land-cover change scenarios are: (1)

the end of deforestation (ED) that assumes an imme-

diate ED (Nepstad et al. 2009) and (2) the business-as-

usual (BAU), which assumes the recent deforestation

trend (1996–2005 mean annual rate) that resulted from

low levels of compliance with environmental laws

(Stickler et al. 2009), and (3) the integrated landscape

conservation (ILC), which assumes compliance with

proposed land-use zoning that includes forest restora-

tion to 50% of private properties in consolidated

agricultural zones and reserve compensation between

watersheds. In addition, vegetation within 50-m of

streams must be strictly protected or restored if absent

(Stickler et al. 2009)—Appendix 1 in Supplementary

Material. The ILC allows for forest regrowth, and thus

presents the greatest extent of forests (secondary plus

primary) at the end of the simulation period. Climate

scenarios consist of either the impacts of climate

change as determined by the HadCM3 model under

the SRES-A2 scenario (Cox et al 1999) or the

permanence of current climate conditions. Finally,

we modeled a better land-use management scenario

(BLUM), in which we assume that the effect of

Aliança da Terra’s Registry of Social-Environmental

Responsibility (RSER) and its fire brigades on dimin-

ishing the chance of wildfires will be expanded to all

Fig. 3 Interaction between fire and carbon pools of a specific

forest location. Structural leaf litter determines the fuel loads

and the coarse woody debris pool is where charcoal from fire

accumulates

Table 2 Modeled

scenarios
Fire Land-cover

change

Climate

change

Fire

prevention

NoFire_NoLUC_NoCC No No No No

NoFire_NoLUC_CC No No Yes No

Fire_NoLUC_NoCC Yes No No No

Fire_NoLUC_CC Yes No Yes No

Fire_LUC_NoCC Yes Yes No No

Fire_LUC_CC Yes Yes Yes No

Fire_LUC_NoCC_ILC Yes Yes No No

Fire_LUC_CC_ILC Yes Yes Yes No

Fire_NoLUC_NoCC_FP Yes No No Yes

Fire_LUC_NoCC_ILC_FP Yes Yes No Yes

Fire_LUC_CC_ILC_FP Yes Yes Yes Yes
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private properties in the Xingu (aliancadater-

ra.org.br)—Appendix 7 in Supplementary Material.

For each scenario, we analyzed extent of forest

burned and total carbon balance of the forest for a

40 year time-period. Since forest extent varies over

time in scenarios with land-cover change, we used

percentage of forest burned annually instead of total

area for comparison. Moreover, because of the histor-

ical inhibitory effect of indigenous lands on fire

(Nepstad et al. 2006) and of PAs, in general, on

deforestation (Soares-Filho et al. 2010b), our analyses

are performed separately for areas inside and outside of

PAs. Finally, we compared a series of landscape

metrics with the extent of forest remnants and percent-

age of forest burned under BAU (Fire_ LUC_NoCC) to

select the metrics that best discern forest fragmentation

and its association with fire intensity on the Xingu

landscapes (Appendix 8 in Supplementary Material).

Results

The combination of BAU deforestation and climate

change (Fire_LUC_CC) indicates the potential for a

rampant fire regime across the Xingu landscapes in the

near future if common land management practices are

maintained. The percentage of forest fragments outside

PAs that burn annually increases from the current

average of 2.4% to *10% after 2040, a fourfold

increase (Fig. 4). Conversely, the percentage of forest

that burns annually inside PAs only increases from 0.2 to

0.3% by midcentury. Under this same scenario, in which

deforestation removes 56% of the current forest extent

outside PAs by 2050, only 22% of the current forest

fragments outside PAs would escape fire or deforesta-

tion by 2050, in contrast to 86% of the forest within PAs.

When the effect of climate change is removed from

BAU (Fire_LUC_NoCC), the percentage of forest

Fig. 4 Percentage of forest

burned outside PAs under

modeled scenarios
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burned outside PAs almost doubles after 2040. If we

compare the annual percentage of forest that burns

over the 40 years period, BAU in conjunction with

climate change may increase the impact of fire on the

forest by 140%, or double it if climate change is not

considered. Although Fig. 4 does not show seasonal

variability, fire activity is, on average, four times more

intense during the dry season. The climatic fire risk

component of FISC predicts this intra-annual vari-

ability well (Fig. S3, Appendix 2 in Supplementary

Material).

For the ED scenario, the percentage of forest

burned annually after 2040 inside and outside of PAs

increases by 68 and 71%, respectively, as a result of

climate change (Fire_NoLUC_CC). Therefore, the

impact of climate change on fire is considerably less in

the absence of continued deforestation and forest

fragmentation. In the climate change only scenario

(Fire_ NoLUC _CC), understory fires would affect

forests outside PAs once every 35 years, on average—

a figure 33% higher than the current frequency. Yet

only 56% of the forest fragments outside PAs would

have escaped fire by 2050, as opposed to 63% under

current conditions. The average frequency of under-

story fires in PAs would be once every 343 years with

climate change and once every 495 years under

current climate conditions (NoFire_NoLUC_NoCC).

In addition, 93–95% of forests within PAs would

escape fire by 2050 either under Fire_NoLUC_NoCC

or Fire_ NoLUC _CC. Under current conditions,

BLUM could reduce current fire activity outside PAs

by 13% (Fire_ NoLUC_NoCC_FP), while ILC would

abate fire by 36% by midcentury as a result of forest

recovery (Fire_ LUC_NoCC_ILC), or 7% if combined

with climate change (Fire_ LUC_CC_ILC). Of par-

ticular importance, the combination of BLUM and

ILC under current climate conditions (Fire_ LUC_

NoCC_ILC_ FP) would abate fire by 42% by

midcentury, compared to current regime, or by 18%

even in the event of climate change (Fire_ LUC_

CC_ILC_ FP) (Fig. 4).

Of the factors we considered, forest restoration has,

therefore, the single largest impact on preventing

understory fires in the Xingu region, demonstrating

that the major driver of fire in the Xingu headwaters

for the next four decades is forest fragmentation rather

than climate change. In this regard, we found that a set

of metrics representing four of the seven universal

landscape structure components—namely dominance

of large patches, patch clumpiness, shape variability,

and isolation (Cushman et al. 2008)—are well-suited

to relate landscape structure and fire. These metrics

are, respectively, (1) largest patch index, (2) index of

contagion, (3) perimeter to area ratio, and (4) mean

patch distance. All these metrics showed high associ-

ation with extent of forest remnants (R2 = 0.88–0.99)

and percentage of forest burned outside PAs

(R2 = 0.87–0.99) for the Xingu landscapes (Appendix

8 in Supplementary Material).

With respect to the carbon balance of the region’s

forests, in the absence of fire, deforestation and climate

change (NoFire_NoLUC_NoCC), CARLUC simu-

lates a net balance of 1.6 ± 0.5 ton ha-1 year-1, on

average (Fig. 5), but varying from 3.5 to a low of

0.5 ton ha-1 year-1 in drought years (positive sign

means carbon removal and negative emissions). The

range of these values is in accordance with field

measurements in other Amazon regions, especially

those situated in the southern Amazon (Philips et al.

2009). This fact supports CARLUC’s ability to sim-

ulate carbon fluxes between forest pools and from the

forest to the atmosphere in the absence of disturbance

by fire or logging. Results from CARLUC also show

that climate change alone (NoFire_ NoLUC _CC)

could reduce total carbon removed from the atmo-

sphere by the forests by 12% over the next four

decades. Fire in the ED scenario would diminish the

total forest carbon budget by 4% without climate

change (Fire_ NoLUC_NoCC) and by 18% with

climate change—Fire_ NoLUC _CC (respectively, 1

and 16% within and 6 and 19% outside PAs). Although

total direct emissions from understory fires in the

Xingu headwaters are around 0.8 Mton year-1 in

normal years, they can reach up to 2.7 Mton year-1

in drought years (Fig. 6), notwithstanding their indi-

rect impact that continues to be large over time due to

post-fire forest mortality. Moreover, if emissions from

deforestation are added to emissions from fire and

reduction of carbon sequestration by climate change,

the forest would become a source of carbon over the

next four decades with an annual average net balance

of—0.1 Mton ha-1 year-1 (Fire_ LUC _CC). This

scenario might be even more dramatic if it weren’t for

the inhibitory effect of the Xingu Indigenous Park and

other PAs on deforestation in the region. However, the

effect of fire on the forest carbon balance could be

further aggravated as drought events increase in

frequency and intensity due to global warming. In
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fact, our results show that climate change alone (Fire_

NoLUC _CC) would increase fire emissions by 60%

over the next 40 years, and boost peak carbon emis-

sions from forest fires in El-Niño-like years by up to

4.3 Mton year-1 (Fig. 6). Finally, in the combined

BLUM and ILC scenario (Fire_ LUC_NoC-

C_ILC_FP), better land-use management and forest

restoration, which greatly compensates additional

deforestation, could sequester 1.51 ± 0.5 ton ha-1 -

year-1 of carbon, on average, over the next 40 years, or

1.43 ± 0.5 ton ha-1 year-1 in the event of climate

change (Fire_ LUC_CC_ILC_FP) (Fig. 5).

Discussion

Our fire simulations under climate and land-cover

scenarios suggest that the major driver of understory

fires today and in the near future is forest fragmenta-

tion rather than climate change. Nevertheless, better

land-use management practices associated with fire

prevention and suppression campaigns, if expanded

and consolidated throughout the region, could tame

wildfires. Understory fire intensity proved to be

closely related to a set of landscape metrics that

describe the structure of the remaining forest. While

climate change may increase the percentage of forest

burned outside PAs by 30% over the next four

decades, forest fragmentation alone may double it. In

addition, synergy between climate change and defor-

estation could further contribute to fire, increasing the

percentage of forest burned outside PAs by 140% over

the next four decades. Conversely, the adoption of a

conservation and fire prevention scenario (Fire_

LUC_CC_ILC_FP) would abate fire by 18% by

midcentury even in the event of climate change.

The extent to which climate change will affect

future fire regimes is still uncertain and will depend

upon the improvement of global climate models. With

this in mind, we used the outputs from the HadCM3

model to set an upper bound for the effects of climate

change since this model, although highly ranked

among the IPCC models (IPCC 2007), predicts the

most severe forest dieback effects in the Amazon

(Malhi et al. 2009). Even so, our study shows that

forest fragmentation rather than climate change will

Fig. 5 Annual mean carbon

balance for the modeled

scenarios

Fig. 6 Forest fire emissions

under no deforestation and

climate change scenarios

(Fire_NoLUC_CC) and no

climate change

(Fire_NoLUC_NoCC)
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continue to be the major driver of forest fires in the

Amazon. In future FISC runs, this tendency could be

balanced by employing projections from other climate

models under a broader set of climate scenarios. The

prompt availability of climate data in standard GIS

format (e.g. Geotiff) will greatly facilitate the utiliza-

tion of those projections in models that integrate

responses of landscape processes to climate change.

In terms of the carbon balance, our results also

support those of Philips et al. (2009), who showed that

the Amazon forest is sequestering carbon under stable

climatic conditions. However, it is clear that as climate

change and deforestation are included in simulations,

the forest’s ability to sequester carbon becomes

impaired and may ultimately shift the forest from a

net sink to a source of atmospheric CO2. Regarding

our estimates of carbon balance, two sources of

uncertainty must be mentioned. Firstly, it is important

to stress that the field experiments that provided data

for FISC’s emission rates (Balch et al. 2008) were

conducted in non-logged forests, suggesting that our

results might underestimate fire emissions in the case

of logged forests, which mostly occur in the north-

western of Xingu. Secondly, recurrent fires also

modify forest composition, inducing the spread of

pyrophytic vegetation, such as bamboos and grasses

(Barlow and Peres 2008). Hence the inclusion of this

process would increase forest flammability and also

raise our emission estimates.

Our modeled fire results showed large differences

inside and outside of PAs, with forests inside PAs

much less impacted by climate change. This result is in

agreement with previous studies which indicate that

preserving large tracts of undisturbed forests is the

single most important factor for maintaining the

Amazon forest (Cochrane and Barber 2009; Malhi

et al 2009).

Conclusion and outlook

Fire modeling provides a unique opportunity to

investigate the cornerstone concept of landscape

ecology in an integrated fashion, i.e. the interactions

between landscape structure, functioning and dynam-

ics and human dimensions (Forman and Godron

1986). In this regard, our model explicitly incorporates

better land-use management practices and the spatial

patterns resulting from different land-cover scenarios

into simulations of tropical forest fire. Hence it can be

used as a tool to explore the effects of various land-use

practices and forest remnant configurations, including

the design of forest corridors, on understory fires, and

thus on forest vulnerability. To this end, FISC deals

with patch size and form and forest connectivity

resulting from multiple transitions between the ele-

ments of the landscape (Soares-Filho et al. 2002;

2010a). Additionally, FISC incorporates advances in

fire science from field experiments, remote sensing,

and global climate models, making it capable of

simulating the processes of fire ignition and propaga-

tion and the effects of fire on carbon cycling and forest

dynamics at a high spatial resolution (\1 km2). Hence,

the FISC framework represents a bottom-up approach

that aims to bridge the gap in modeling the feedbacks

between climate change, deforestation, logging, and

fire in the Amazon (Nepstad el al. 2008).

As a next step, we plan to expand FISC to the entire

Amazon and to fully couple it to a dynamic vegetation

model capable of running at a high spatial resolution

(e.g. Santos and Costa 2004), in order to include

feedbacks between fire and changes in vegetation

composition. This effort will rely heavily on field

measurements of the impacts of fire on other Amazon

ecosystems, which are still rare, and the prompt

availability of basin-wide time-series maps of forest

fire scars (Alencar et al. 2011). These new data will stir

up advancements in the science of tropical fire. Still,

future availability of land-use maps that differentiate

between ranching and crop farming and between large

and small landholders will increase accuracy of fire

prediction in FISC, given that fire is highly associated

with land management practices within a specific set

of land-use activities (Alencar et al. 2006), and is less

likely in regions with a greater concentration of agro-

industrial annual crop production.

Efforts to reduce wildfires must also focus on

promoting active fire prevention campaigns, investing

in fire brigades, and discouraging land-use manage-

ment practices commonly associated with fire. These

goals could be also accomplished by expanding the

number of farms under RSER and strengthening best

land-use practices to small landholders through credit

mechanisms (Carmenta et al. 2011).

Finally, our results have implications for REDD?,

as FISC can estimate carbon emission from forest

degradation by fire, the second D of REDD?, as

well as enhancement of forest carbon stocks through
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vegetation regrowth. In this sense, not only do our

modeling results confirm the synergy of the two Ds of

REDD?, which must indeed be tackled together

(Aragão and Shimabokuro 2010), but also point out

the co-benefits of REDD? in maintaining the health of

forest ecosystems and hence their resilience in the face

of climate change.
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